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ORBIT EQUIVALENCE OF ERGODIC GROUP ACTIONS

ADRIAN IOANA

These are partial lecture notes from a topics graduate class taught at UCSD in Fall 2019.

1. Group actions, equivalence relations and orbit equivalence

1.1. Standard spaces. A Borel space (X,BX) is a pair consisting of a topological space X and
its σ-algebra of Borel sets BX . If the topology on X can be chosen to the Polish (i.e., separable,
metrizable and complete), then (X,BX) is called a standard Borel space. For simplicity, we will
omit the σ-algebra and write X instead of (X,BX). If (X,BX) and (Y,BY ) are Borel spaces, then a
map θ : X → Y is called a Borel isomorphism if it is a bijection and θ and θ−1 are Borel measurable.
Note that a Borel bijection θ is automatically a Borel isomorphism (see [Ke95, Corollary 15.2]).

Definition 1.1. A standard probability space is a measure space (X,BX , µ), where (X,BX) is a
standard Borel space and µ : BX → [0, 1] is a σ-additive measure with µ(X) = 1. For simplicity,
we will write (X,µ) instead of (X,BX , µ). If (X,µ) and (Y, ν) are standard probability spaces, a
map θ : X → Y is called a measure preserving (m.p.) isomorphism if it is a Borel isomorphism and
measure preserving: θ∗µ = ν, where θ∗µ(A) = µ(θ−1(A)), for any A ∈ BY .

Example 1.2. The following are standard probability spaces:

(1) ([0, 1], λ), where [0, 1] is endowed with the Euclidean topology and its Lebegue measure λ.
(2) (G,mG), where G is a compact metrizable group and mG is the Haar measure of G (see

[Ha74, Chapter XII] and [Fo99, Chapter 11]).
(3) Let (Xn, µn), n ∈ N, be a sequence of standard probability spaces. Endow X :=

∏
n∈NXn

with the product topology and the infinite product probability measure µ := ⊗n∈Nµn. This
satisfies µ(

∏
n∈NAn) =

∏
n∈N µn(An), for any sequence of Borel sets An ⊂ Xn, n ∈ N

(see [Ha74, Chapter VII]). Then (X,µ) is a standard probability space.

For the following results, see [Ke95, Theorems 15.6 and 17.4].

Theorem 1.3 (the isomorphism theorems). The following hold:

(1) Any uncountable standard Borel space X is Borel isomorphic to [0, 1].
(2) Any non-atomic standard probability space (X,µ) is isomorphic to ([0, 1], λ).

Convention 1.4. Hereafter, null sets are neglected and equality is understood almost everywhere.

1.2. Group actions. Unless specified otherwise, all groups Γ that we consider are countable,
discrete and infinite, and all probability spaces (X,µ) are standard. An action of a group Γ on a
set X is a map Γ×X → X, which we denote by (g, x) 7→ g · x, such that g · (hx) = (gh) · x.

Definition 1.5. An action of a group Γ on a probability space (X,µ) is called p.m.p. (probability
measure preserving) if for all g ∈ Γ, the map x 7→ g · x is an m.p. isomorphism of X, i.e., a Borel
isomorphism with µ(g ·A) = µ(A), for all A ∈ BX . We denote p.m.p. actions by Γ y (X,µ).

Example 1.6. The following actions are p.m.p.:
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(1) If G is a compact metrizable group, then any subgroup Γ < G acts on G by left translation:

g · x = gx, for every g ∈ Γ and x ∈ G.

This action preserves the Haar measure, mG, and thus Γ y (G,mG) is a p.m.p. action.
(2) If Γ is a countable group and (X,µ) a standard probability space, then Γ acts on XΓ by

g · x = (xg−1h)h∈Γ, for every g ∈ Γ and x = (xh)h∈Γ ∈ XΓ.

This action preserves the product measure µ⊗Γ , and the p.m.p. action Γ y (XΓ, µ⊗Γ) is
called a Bernoulli action.

(3) The standard (matrix multiplication) action of SLn(Z) on the n-torus Tn = Rn/Zn endowed
with the Lebesgue measure, for n ≥ 2.

(4) If G is a Lie group and Γ,Λ < G are lattices (e.g., G = SLn(R), Γ = Λ = SLn(Z), n ≥ 2)
then the left translation action of Γ on G/Λ given by g ·(xΛ) = gxΛ preserves the probability
measure mG/Λ obtained by pushing forward the Haar measure mG through G→ G/Λ.

1.3. Equivalence relations. Let X be a standard Borel space. A partial isomorphism is a Borel
isomorphism θ : A = dom(θ)→ B = im(θ) between two Borel subsets A and B of X.

An equivalence relation R on X is called Borel if R is a Borel subset of X ×X, and countable if
the R-class [x]R = {y ∈ X | (x, y) ∈ R} is countable, for any x ∈ X. We denote by

• [[R]] the set, called the full groupoid of R, of partial isomorphisms θ : A → B such that
(x, θ(x)) ∈ R, for all x ∈ A, and by
• [R] the group, called the full group of R, of Borel isomorphisms θ : X → X such that

(x, θ(x)) ∈ R, for all x ∈ X.

Definition 1.7. Let (X,µ) be a standard probability space. An equivalence relation R on (X,µ) is
called countable p.m.p. (or simply, p.m.p.) if it is countable, Borel and every partial isomorphism
θ : A→ B belonging to [[R]] is measure preserving: µ(θ(C)) = µ(C), for every Borel set C ⊂ A.

Remark 1.8. Let R be a p.m.p. equivalence relation on (X,µ). Let θ0 ∈ [[R]] and denote
A0 = dom(θ0) and B0 = im(θ0). Assume that µ(A0) > 0 and let A ⊃ A0, B ⊃ B0 be Borel
sets such that µ(A \ A0) = µ(B \ B0) = 0. Then we can find a partial isomorphism θ : A → B
such that θ(x) = θ0(x), for almost every x ∈ A0. Let N ⊂ A0 be an uncountable null Borel set.
Then (A \A0) ∪N and (B \B0) ∪ θ0(N) are uncountable standard Borel spaces. By Theorem 1.3
there is a Borel isomorphism θ′ : (A \ A0) ∪ N → (B \ B0) ∪ θ0(N). Then θ : A → B defined by
θ|A0\N = θ0|A0\N and θ|(A\A0)∪N = θ′ satisfies the desired conditions.

Convention: Remark 1.8 allows us to make the following convention: hereafter, we write that a
partial isomorphism θ : A→ B belongs to [[R]] if there is a Borel co-null subset A0 ⊂ A such that
θ|A0

belongs to [[R]], in the above sense.

Exercise 1.9. Let Γ y (X,µ) be a p.m.p. action of a countable group on a standard probability
space. Prove that the orbit equivalence relation R(Γ y X) := {(x, y) ∈ X ×X | Γ · x = Γ · y} is a
countable p.m.p. equivalence relation.

Theorem 1.10 (Feldman-Moore, [FM77]). Any countable p.m.p. equivalence relation R is the
orbit equivalence relation, R(Γ y X), of a p.m.p. action of a countable group Γ.

For a proof of this theorem, see [FM77] or [KM04, Chapter I].

Remark 1.11. A p.m.p. action Γ y (X,µ) is called free if every non-trivial element g ∈ Γ \ {e}
acts freely, in the sense that µ({x ∈ X | g · x = x}) = 0. Furman [Fu98] found the first examples of
countable p.m.p. equivalence relations which are not orbit equivalence relation of any free action.



ORBIT EQUIVALENCE OF ERGODIC GROUP ACTIONS 3

1.4. Ergodicity. A p.m.p. action Γ y (X,µ) is called ergodic if any Γ-invariant Borel subset
Y ⊂ X is null or co-null, i.e., µ(Y ) ∈ {0, 1}. A p.m.p. equivalence relation R on (X,µ) is called
ergodic if any R-invariant Borel subset Y ⊂ X is null or co-null.

Remark 1.12. A p.m.p. action Γ y (X,µ) is ergodic iff R(Γ y X) is ergodic.

Exercise 1.13. Let Γ y (X,µ) be an ergodic p.m.p. action of a countable group Γ on a standard
probability space (X,µ). Let Y ⊂ X be a Borel set such that µ(g · Y4Y ) = 0, for every g ∈ Γ.
Prove that Y is null or co-null.

Exercise 1.14. Let Γ be a countable dense subgroup of a compact metrizable group G. Prove
that the left translation action Γ y (G,mG) is free and ergodic.

Exercise 1.15. Let Γ be a countable group and (X,µ) be a standard probability space with more
than one point. Prove that the Bernoulli action Γ y (XΓ, µ⊗Γ) is free and ergodic. Moreover,
prove that this action is mixing: lim

g→∞
µ(g ·A ∩B) = µ(A)µ(B), for any Borel sets A,B ⊂ XΓ.

Lemma 1.16. Let R be an ergodic p.m.p. equivalence relation on (X,µ). Let A,B ⊂ X be Borel
sets with µ(A) = µ(B) > 0. Then there exists θ ∈ [R] such that θ(A) = B.

Proof. We first prove that there is θ′ ∈ [[R]] such that dom(θ′) = A and im(θ′) = B. Since
µ(X\A) = µ(X\B), we can thus also find θ′′ ∈ [[R]] such that dom(θ′′) = X\A and im(θ′′) = X\B.
Then θ : X → X given by θ|A = θ′ and θ|X\A = θ′′ defines an element of [R] such that θ(A) = B.

To prove the above assertion, we first apply Theorem 1.10 and Remark 1.12 to find an ergodic
p.m.p. action Γ y (X,µ) of a countable group Γ such that R = R(Γ y X). We define F to be the
set of subsets G of [[R]] with the property that {dom(θ)}θ∈G are pairwise disjoint non-null subsets
of A and {im(θ)}θ∈G are pairwise disjoint non-null subsets of B.

We claim that F is non-empty. Since Γ acts ergodically, the Γ-invariant non-null set ∪g∈Γ(g · A)
must be co-null in X. Thus, µ(∪g∈Γ(g ·A∩B)) = µ(B) > 0, hence µ(g ·A∩B) > 0, for some g ∈ Γ.
Define ρ : A∩ g−1 ·B → g ·A∩B by letting ρ(x) = g ·x. Then ρ ∈ [[R]] and since dom(ρ) ⊂ A and
im(ρ) ⊂ B are non-null sets, we get that {ρ} ∈ F , and thus F 6= ∅.

Next, we order F by inclusion: G ≤ G′ iff G ⊂ G′. If {Gi}i∈I ⊂ F is a totally ordered family (i.e.,
such that Gi ≤ Gj or Gj ≤ Gi, for every i, j ∈ I), then ∪i∈IGi ∈ F is an upper bound for {Gi}i∈I .
By Zorn’s lemma we conclude that there exists a maximal element G ∈ F .

Since {dom(θ)}θ∈G are pairwise disjoint non-null Borel subsets of A and µ(A) ≤ 1, it follows that G is
countable. Enumerate G = {θn}Nn=1, where N ∈ N∪{∞}, and denote An = dom(θn), Bn = im(θn),
for every n. Define A0 = ∪Nn=1An and B0 = ∪Nn=1Bn. Since θn ∈ [[R]] and θn(An) = Bn, we get

that µ(A0) =
∑N

n=1 µ(An) =
∑N

n=1 µ(Bn) = µ(B0), and thus µ(A \A0) = µ(B \B0).

We claim that µ(A \ A0) = µ(B \B0) = 0. Otherwise, if µ(A \ A0) = µ(B \B0) > 0, by repeating
the argument from above, we can find ρ ∈ [[R]] such that dom(ρ) ⊂ A \A0 and im(ρ) ⊂ B \B0 are
non-null sets. But then it is clear that G ∪ {ρ} ∈ F , which contradicts the maximality of G.

Finally, we define θ′ : A0 → B0 by letting θ′(x) = θn(x), if x ∈ An. Then θ′ ∈ [[R]] and
dom(θ′) = A0 and im(θ′) = B0. By Remark 1.8 this implies the assertion, and the conclusion. �

Exercise 1.17. Let R be a countable p.m.p. equivalence relation on a standard probability space.

Let θ ∈ [[R]] and denote A = dom(θ) and B = im(θ). Prove that there is θ̃ ∈ [R] such that θ̃|A = θ.
Suggestion: Prove that for almost every x ∈ B \A, there exists n := n(x) ∈ N such that we have
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θ−1(x), ..., θ−(n−1) ∈ A ∩B and θ−n(x) ∈ A \B. Define

θ̃(x) =


θ(x), if x ∈ A,
θ−n(x)(x), if x ∈ B \A, and

x, if x ∈ X \ (A ∪B).

Definition 1.18. Let R be a p.m.p. equivalence relation on a standard probabilty space (X,µ)
and let A ⊂ X be a non-null Borel set. Endow A with the σ-algebra of Borel subsets of X which
are contained in A, and the probability measure µA(Y ) = µ(Y )/µ(A), for every Borel set Y ⊂ A.
Note that (A,µA) is a standard probability space (see [Ke95, Section 13]). The restriction of R to
A is defined by R|A := R∩ (A×A).

Exercise 1.19. Prove that

(1) R|A is a countable p.m.p. equivalence relation on (A,µA).
(2) If R is ergodic, then R|A is ergodic.

1.5. Orbit equivalence. Two p.m.p. equivalence relations R and S on standard probability
spaces (X,µ) and (Y, ν) are isomorphic to S if there is a m.p. isomorphism θ : X → Y such that
θ([x]R) = [θ(x)]S , for almost every x ∈ X.

Definition 1.20. Two p.m.p. actions Γ y (X,µ) and Λ y (Y, ν) of countable groups Γ and Λ
are orbit equivalent if their orbit equivalence relations are isomorphic. In other words, there is a
m.p. isomorphism θ : X → Y such that θ(Γ · x) = Λ · θ(x), for almost every x ∈ X. The actions
Γ y (X,µ) and Λ y (Y, ν) are conjugate if there are a group isomorphism δ : Γ → Λ and a m.p.
isomorphism θ : X → Y such that θ(g · x) = δ(g) · θ(x), for all g ∈ Γ and almost every x ∈ X.

Orbit equivalence is a much coarser notion of equivalence for p.m.p. actions than conjugacy, as
illustrated by the three exercises below and the results of the following two sections.

The first exercise gives examples of actions of non-isomorphic groups which are orbit equivalent.

Exercise 1.21. Let (X,µ) = ({0, 1}N, ν⊗N), where ν is the probability measure on {0, 1} given
by ν({0}) = ν({1}) = 1/2. Let Γ = ⊕n∈NZ/2Z and the p.m.p. action Γ y (X,µ) given by
(gn) · (xn) = (yn), where yn ≡ gn + xn (mod 2). In other words, the n-th copy of Z/2Z flips the
n-th coordinate in X. Let T : X → X be the m.p. isomorphism (called an odometer) given by
adding 1 to the left of an infinite sequence of 0’s and 1’s. If x = (xn) ∈ X has x1 = ... = xk = 1
and xk+1 = 0, then T (x) = (yn), where y1 = ... = yk = 0, yk+1 = 1 and yn = xn, for n > k + 1.
Consider the p.m.p. action Z y (X,µ), where the generator of Z acts through T : n · x = Tn(x).

Prove that the actions Γ y (X,µ) and Z y (X,µ) have almost the same orbits.

The second exercise shows that conjugacy of left translation actions is very restrictive.

Exercise 1.22. Let Γ and Λ be countable dense subgroups of compact metrizable groups G and
H. Denote by µ := mG and ν := mH the Haar measures of G and H. Assume δ : Γ→ Λ is a group
isomorphism and θ : G→ H is a Borel map such that θ(gx) = δ(g)θ(x), for almost every x ∈ G.

(1) If k ∈ G, prove that there is π(k) ∈ H such that θ(xk) = θ(x)π(k), for almost every x ∈ G.
(2) Prove that π : G→ H is a homomorphism.
(3) Prove that there exists h ∈ H such that θ(x) = hπ(x), for almost every x ∈ G.
(4) Prove that δ(g) = hπ(g)h−1, for every g ∈ Γ.
(5) Prove that π : G→ H is a continuous group isomorophism.
(6) Deduce that the left translation actions Γ y (G,µ) and Λ y (Y, ν) are conjugate if and

only if there is a continuous group isomorphism δ : G→ H such that δ(Γ) = Λ.
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Suggestion for (1). Define θk : G→ H by letting θk(x) = θ(x)−1θ(xk). Note that θk is invariant
under the left translation action Γ y (G,µ), and apply Lemma 4.16 (which we will prove later)
Suggestion for (3). Note that θ(xk) = θ(x)π(k), for almost every (x, k) ∈ G × G, and apply
Fubini’s theorem.

The third exercise gives examples of non-conjugate actions of Z. These actions are orbit equivalent
as a consequence of Dye’s theorem 2.1.

Exercise 1.23. Let T = {z ∈ C | |z| = 1} be the group of complex numbers of modulus 1 endowed
with the topology induced from C. Then T is a compact metrizable groups. Denote by λ its Haar
measure (which coincides with the normalized Lebesgue measure). Let α ∈ R \πQ be an irrational
multiple of π. Then the map n 7→ exp(inα) gives a dense embedding of Z into T. We denote by
σα the associated left translation action Z y (T, λ), called the irrational rotation by angle α, i.e.,

n · z = exp(inα)z.

(1) Prove that if δ : T→ T is a continuous group isomorphism, then δ(z) = z, for every z ∈ T,
or δ(z) = 1/z, for every z ∈ T.

(2) Let α, β ∈ R \ πQ. Prove that σα is conjugate to σβ if and only if exp(iα) = exp(iβ) or
exp(iα) = 1/ exp(iβ). (This proves a result due to Halmos and von Neumann [HvN42]).

2. Dye’s theorem and hyperfiniteness

Theorem 2.1 (Dye, [Dy59]). Any two ergodic p.m.p. actions of Z on a non-atomic standard
probability space are orbit equivalent.

Definition 2.2. A p.m.p. equivalence relation R on a standard probability space (X,µ) is called

(1) finite if [x]R is finite, for almost every x ∈ X,
(2) of type In, for some n ∈ N, if [x]R has exactly n elements, for almost every x ∈ X, and
(3) hyperfinite if there are a co-null set Y ⊂ X and an increasing sequence R1 ⊂ R2 ⊂ ... of

finite p.m.p. subequivalence relations of R|Y such that R|Y = ∪k∈NRk.

Theorem 2.3 (Dye, [Dy59]). Any two ergodic hyperfinite p.m.p. equivalence relations on a non-
atomic standard probability space are orbit equivalent.

Proof of Theorem 2.1 assuming Theorem 2.3. Let Z y (X,µ) be an ergodic p.m.p. action.
By Theorem 2.3, in order to get the conclusion, it suffices to argue that R := R(Z y X) is
hyperfinite. This a consequence of the so-called Rokhlin’s lemma (see [KM04, Section 7]). We
provide a short, alternative argument. To this end, denote by T : X → X the m.p. isomorphism
corresponding to a generator of Z. Then T is ergodic and R = {(x, Tnx) | x ∈ X,n ∈ Z}.

Let X1 ⊂ X2 ⊂ ... be an increasing sequence of Borel subsets of X with µ(Xk) = 1 − 1/k.
We claim that the set Yk = {x ∈ Xk | Tnx ∈ Xk, for every n ≥ 0} is null. Since T (Yk) ⊂ Yk,
µ(T (Yk)) = µ(Yk) < 1 and T is ergodic, Exercise 1.13 implies that Yk is null. Similarly, the set
Zk = {x ∈ Xk | Tnx ∈ Xk, for every n ≤ 0} is null.

Let Sk be the equivalence relation on Xk defined as follows: (x, y) ∈ Sk iff there is n ≥ 0 such that
Tnx = y and x, Tx, T 2x, ..., Tnx ∈ Xk or n ≤ 0 such that Tnx = y and x, T−1x, T−2x, ..., Tnx ∈ Xk.
Then Sk ⊂ Sk+1 and the restriction of Sk to Xk \ (Yk ∪Zk) is a finite equivalence relation. Thus, if

Rk = Sk ∪ {(x, x) | x ∈ X \Xk},

then Rk ⊂ Rk+1 ⊂ R, and the restriction of Rk to X \ (Yk ∪ Zk) is a finite equivalence relation.
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Finally, note that if k,m ∈ N, then µ(∩mi=−mT−iXk) ≥ 1− (2m+ 1)/k. Thus, the set

W =
⋂
m∈N

( ⋃
k∈N

( m⋂
i=−m

T−iXk

))
is co-null in X. Moreover, R|W = ∪k∈NRk|W . Thus, V = W \ (∪k∈N(Yk ∪ Zk)) is co-null in X,
Rk|V is a finite equivalence relation, and R|V = ∪k∈NRk|V . This proves that R is hyperfinite. �

In preparation for the proof of Theorem 2.3, we introduce the following definitions:

Definition 2.4. A fundamental domain for a p.m.p equivalence relation R on (X,µ) is a Borel
set Y ⊂ X that intersects almost every R-class in exactly one point. An array for R is a set
{X1, ϕ1, ...ϕn} consisting of a Borel set X1 ⊂ X of measure 1/n and partial m.p. isomorphisms
ϕi : X1 → ϕi(X1) such that ϕ1 = IdX1 , {ϕi(X1)}ni=1 is a partition of X, and almost every R-class
is equal to {ϕi(x)}ni=1, for some x ∈ X1 (see [KM04] and the references therein).

Exercise 2.5. Prove that the following hold for an p.m.p. equivalence relation R on (X,µ):

(1) R is finite iff it admits a fundamental domain.
(2) R is of type In iff it admits an array {X1, ϕ1, ..., ϕn}.
(3) R is of type In iff it is the orbit equivalence relation of a free p.m.p. action Z/nZ y (X,µ).

Exercise 2.6. Let R and S be p.m.p. equivalence relations of types In and Im on (X,µ) such that
R ⊂ S. Let X1 ⊂ X be a fundamental domain for R. Prove that n | m and S|X1 is of type Im/n.

Assumption. For the rest of this section, R is an ergodic p.m.p. equivalence relation on (X,µ).

Definition 2.7. Let S, T be subequivalence relations of R. We write S ⊂ε T (and say that S is
ε-contained in T ) for ε > 0 if there is a Borel set Y ⊂ X such that S|Y ⊂ T |Y and µ(X \ Y ) < ε.

The proof of Theorem 2.3 relies on several lemmas.

Lemma 2.8. Let R1 ⊂ R2 ⊂ ... be a sequence of subequivalence relations of R with R = ∪k∈NRk.
Then for every finite subequivalence relation S ⊂ R and ε > 0, there is k ∈ N such that S ⊂ε Rk.

Exercise 2.9. Prove Lemma 2.8.

Lemma 2.10. Let S ⊂ R be a finite subequivalence relation and δ > 0. Then there is a subequiv-
alence relation T ⊂ R of type I2k , for some k ∈ N, such that S ⊂δ T .

Proof. We prove the lemma when S is of type Id, for some d ∈ N, and leave the general case as an
exercise. In this case, by Exercise 2.5, S admits an array {X1, ϕ1, ..., ϕd}.
Let Y1 ⊂ X1 be a Borel set such that µ(Y1) = m/2k, for some m, k ∈ N, and µ(X1 \ Y1) < δ/d.
Partition Y1 = tmj=1Zj into Borel sets of measure 1/2k. Let Y = tdi=1ϕi(Y1). Then µ(Y ) = dm/2k,

hence µ(X \ Y ) = (2k − dm)/2k. Partition X \ Y = t2k−dm
l=1 Wl into Borel sets of measure 1/2k.

Let ψ1 = IdZ1 . By Lemma 1.16, for every 2 ≤ j ≤ m and 1 ≤ l ≤ 2n−dm, we can find ψj , ρl ∈ [[R]]
such that dom(ψj) = dom(ρl) = Z1, im(ψj) = Zj and im(ρl) = Wl. Let T ⊂ R be the equivalence

relation whose classes are the sets {ϕi(ψj(x)) | 1 ≤ i ≤ d, 1 ≤ j ≤ m} ∪ {ρl(x) | 1 ≤ l ≤ 2k − dm}
with x ∈ Z1. Then T is of type I2k and S|Y ⊂ T |Y . Since µ(X \Y ) < δ, this proves the lemma. �

Lemma 2.11. Let S and S̃ be finite subequivalence relations of R. Assume that S is of type In
and S ⊂ε S̃, for some n ∈ N and ε > 0. Then there is a subequivalence relation T ⊂ R such that

(1) T is of type In·2k , for some k ∈ N,
(2) S ⊂ T , and
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(3) S̃ ⊂n·ε T .

Proof. Let Y ⊂ X be a Borel set such that S|Y ⊂ S̃|Y and µ(X \ Y ) < ε. Since S is of type In,
we can write S = R(Z/nZ y X) by Exercise 2.5. Then Z = ∩g∈Z/nZ(g · Y ) is S-invariant and
µ(X \Z) < n · ε. Thus, S|Z is of type In, hence by Exercise 2.5 it admits an array {Z1, ϕ1, ..., ϕn}.

Let δ > 0 such that µ(X \ Z) + n · δ < n · ε. Since S̃|Z1 ⊂ R|Z1 is a finite subequivalence relation
and R|Z1 is ergodic, by Lemma 2.10 there is a subequivalence relation T0 ⊂ R|Z1 of type I2k , for

some k ∈ N, and a Borel set W1 ⊂ Z1 such that S̃|W1 ⊂ T0|W1 and µ(Z1 \W1) < δ.

Let T1 ⊂ R|Z be the subequivalence relation whose classes are the sets tni=1ϕi([x]T0) with x ∈ Z1.

Then T1 is a equivalence relation of type In·2k which contains S|Z. Since S̃|W1 ⊂ T0|W1, we also

get that S̃|W ⊂ T1|W , where W := tni=1ϕi(W1) ⊂ Z.

Finally, since Z is S-invariant, we have that S|(X \ Z) is of type In. Since R is ergodic, we
can find a subequivalence relation T2 ⊂ R|(X \ Z) of type In·2k which contains S|(X \ Z). Then

T := T1tT2 is a subequivalence of R of type In·2k which contains S. Moreover, S̃|W ⊂ T |W . Since
µ(Z \W ) = n · µ(Z1 \W1) < n · δ, we get that

µ(X \W ) = µ(X \ Z) + µ(Z \W ) < µ(X \ Z) + n · δ < n · ε
and the conclusion follows. �

Next, we show that the equivalence relation T from Lemma 2.11 can be chosen to have a certain
additional property. Let S ⊂ T be p.m.p. equivalence relations of type In and Im on (X,µ). Let
A = {X1, ϕi} be an array for S. A Borel set Z ⊂ X is ε-contained in A if µ(Z4(∪i∈Fϕi(X1)) < ε,
for some F ⊂ {1, .., n}. An array A′ for T refines A if there is an array B = {Y1, ψj} for T |X1 such
that A′ = {Y1, ϕi ◦ ψj}. We write A′ = A ∨ B.

Lemma 2.12. Let T ⊂ R be a subequivalence relation of type In with an array A = {X1, ϕ1, ..., ϕn}.
Let Z ⊂ X be a Borel set and δ > 0. Then there are an equivalence relation T ⊂ T̃ ⊂ R of type

In·2m, for m ≥ 0, and an array B = {Y1, ψ1, ..., ψn·2m} for T̃ which refines A and δ-contains Z.

Proof. For every large enough m, we can find a partition X1 = t2m

l=1X1,l into Borel sets of measure

µ(X1)/2m = 1/(n · 2m) and sets Si ⊂ {1, 2, ..., 2m} such that µ(ϕ−1
i (Z ∩Xi)4(∪l∈Si

X1,l)) < δ/n,
for every 1 ≤ i ≤ n. Thus, we have

(2.1) µ
(
(Z ∩Xi)4(∪l∈Si

ϕi(X1,l))
)
< δ/n, for every 1 ≤ i ≤ n.

Since R|X1 is ergodic, Lemma 1.16 gives a subequivalence T ′ ⊂ R|X1 of type I2m with an array

{X1,1, ψ1, ..., ψ2m} satisfying ψl(X1,1) = X1,l, for all 1 ≤ l ≤ 2m. Let T̃ be the type In·2m equivalence

relation with B = {X1,1, ϕi ◦ ψl} as an array. Then T ⊂ T̃ , B refines A, and (2.1) implies that

µ
(
Z4(∪1≤i≤n,l∈Si

ϕi(X1,l))
)
< δ,

which finishes the proof. �

Proof of Theorem 2.3. After replacing R with a co-null subset, we can find an increasing
sequence R1 ⊂ R2 ⊂ ... of finite subequivalence relations of R such that R = ∪k∈NRk. Since X
is a standard Borel space, we can find sequence of Borel subsets {Yn}n∈N which separate points in
X, and in which every Yn repeats infinitely many times.

Claim 2.13. There is an increasing sequence S1 ⊂ S2 ⊂ ... of subequivalence relations of R and
arrays An for Sn such that for all n ∈ N

(1) Rn ⊂1/2n Sn,
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(2) Sn is of type I2dn , for some dn ∈ N,
(3) An refines An−1 (where A0 = {X, IdX}), and
(4) Yn is 1/2n-contained in An.

Proof of Claim 2.13. We proceed by induction on n.

By Lemma 2.10 there is an equivalence relation T1 of type I2k1 such that R1 ⊂1/2 T1. By Lemma
2.12 we can find an equivalence relation T1 ⊂ S1 of type I2d1 , for d1 ≥ k1, and an array A1 for S1

which 1/2-contains Y1. This proves the case n = 1.

Next, given S1, ...,Sn−1,A1, ...,An−1, for some n ≥ 2, let us construct Sn,An. First, by applying
Lemma 2.8 we can find kn ≥ n such that Sn−1 ⊂1/2n+dn−1 Rkn . Second, since Sn−1 is of type I2dn−1 ,

by applying Lemma 2.11 (with ε = 1/2n+dn−1), we can find a subequivalence relation Tn ⊂ R of
type I2kn , for some kn ≥ dn−1, such that Sn−1 ⊂ Tn and Rkn ⊂1/2n Tn. Let Bn be an array of Tn
which refines An−1. Third, Lemma 2.12 gives a subequivalence relation Sn ⊂ R of type I2dn , for
some dn ≥ kn, such that Tn ⊂ Sn and an array An for Tn which refines Bn and 1/2n-contains Yn.
Then An also refines An−1. As kn ≥ n, we have Rn ⊂ Rkn ⊂1/2n Tn ⊂ Sn, and thus condition (1)
holds. This proves the inductive step. �

Next, since R = ∪n∈NRn, condition (1) from Claim (1) implies that R|Y = ∪n∈NSn|Y , for a co-null
subset Y ⊂ X. Thus, after replacing X with Y , we may assume that R = ∪n∈NSn.

In the rest of the proof, we follow the exposition from the proof of [KM04, Theorem 7.13]. Write
A1 = {X1, ϕ1,1, ..., ϕ1,2d1}. SinceAn refinesAn−1, we can find an array Bn = {Xn, ϕn,1, ..., ϕn,2dn−dn−1}
for Sn|Xn−1 such that An = An−1 ∨ Bn, for every n ≥ 2. Put d0 = 0. Then we have

An = {Xn, ϕ1,k1 ◦ ϕ2,k2 ◦ ... ◦ ϕn,kn , 1 ≤ ki ≤ 2di−di−1 , 1 ≤ i ≤ n}.

We letX(k1, ..., kn) = (ϕ1,k1◦ϕ2,k2◦...◦ϕn,kn)(Xn), for every n ∈ N and (k1, ..., kn) ∈
∏

1≤i≤n{1, ..., 2di−di−1}.
Then we have

(2.2) X(k1, ..., kn, kn+1) ⊂ X(k1, ..., kn) and X = tk1,...,knX(k1, ..., kn).

For m ∈ N, let µm be the uniform probability measure on {1, ...,m}. Define a p.m.p equivalence
relation S on

(Y, ν) =
∏
n∈N

(
{1, ..., 2dn−dn−1}, µ2dn−dn−1 )

by

(kn)S(ln) ⇐⇒ there is N ∈ N such that kn = ln, for all n ≥ N .

By (2.2), if x ∈ X, then there is a sequence (kn) ∈ Y such that x ∈ X(k1, ..., kn), for every n ∈ N.
We define θ : X → Y by letting θ(x) = (kn).

Claim 2.14. θ is Borel, measure preserving and 1-1 on a co-null R-invariant Borel set X0 ⊂ X.

Proof of Claim 2.14. For n ∈ N and (k1, ..., kn) ∈
∏

1≤i≤n{1, ..., 2di−di−1}, consider the cylinder set

C(k1, ..., kn) = {(li) ∈ Y | li = ki, for all i ≤ n}.

Then θ−1(C(k1, ..., kn)) = X(k1, ..., kn). Since Xn is a fundamental domain for Sn, we have

µ(X(k1, ..., kn)) = µ(Xn) = 1/2dn = ν(C(k1, ..., kn)).

This implies that θ is Borel and measure preserving.
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Now, by condition (4) from Claim 2.13, for every n ∈ N, we can find a set Y ′n ⊂ X which is a finite
union of sets of the form X(k1, ..., kn) such that µ(Y ′n4Yn) < 1/2n. Then

N =
⋂
m∈N

⋃
n>m

(Y ′n4Yn)

is a null Borel set and the restriction of θ to X \N is 1-1. To see this, let x 6= x′ ∈ X \N . Then
there is m ∈ N, such that x, x′ 6∈ (Y ′n4Yn), for any n > m. Let n > m such that Yn separates x
and x′. Then it follows that Y ′n separates x and x′, which implies that θ(x) 6= θ(x′).

By Theorem 1.10, we can writeR = R(Γ y X), for a countable group Γ. ThenX0 := ∩g∈Γg·(X\N)
is a co-null, R-invariant subset of X on which θ is 1-1. �

Claim 2.15. For all x, x′ ∈ X0 we have that (x, x′) ∈ R ⇐⇒ (θ(x), θ(x′)) ∈ S.

Proof of Claim 2.15. Let x, x′ ∈ X such that (x, x′) ∈ R, and write θ(x) = (kn) and θ(x) = (k′n).
Then there is n ∈ N such that (x, x′) ∈ Sn. Since Xn is a fundamental domain for Sn, we can find
y ∈ Xn such that x = (ϕ1,k1 ◦ ... ◦ ϕn,kn)(y) and x′ = (ϕ1,k′1

◦ ... ◦ ϕn,k′n)(y). Consider the unique

element k ∈ {1, ..., 2dn+1−dn} such that y ∈ ϕn+1,k(Xn+1). Then kn+1 = k′n+1 = k. By induction
on m, we derive that km = k′m, for all m > n, which implies that (θ(x), θ(x′)) ∈ S.

Let x, x′ ∈ X0 such that (θ(x), θ(x′)) ∈ S. Thus, if θ(x) = (kn) and θ(x′) = (k′n), there is m ∈ N
such that kn = k′n, for all n > m. Let y ∈ Xm such that x = (ϕ1,k1 ◦ .... ◦ ϕm,km)(y), and put
x′′ = (ϕ1,k′1

◦ .... ◦ ϕm,k′m)(y). Then θ(x′′) = (k′n) = θ(x′). Since (x, x′′) ∈ R and X0 is R-invariant,

we get that x′′ ∈ X0. Since x′ ∈ X0 and θ is 1-1 on X0, we get that x′ = x′′, hence (x, x′) ∈ R. �

Finally, Claims 2.14 and 2.15 imply that R is isomorphic to S. Since S is isomorphic to the
equivalence relation on ({1, 2}N, µ⊗N

2 ) defined by the same formula as S, the conclusion follows. �

3. Amenability

3.1. Amenable groups. A countable group Γ is called amenable if there exists a linear functional
ϕ : `∞(Γ) → C which is unital (ϕ(1X) = 1), positive (ϕ(f) ≥ 0, for every f ∈ `∞(Γ), f ≥ 0) and
left translation invariant: ϕ(g · f) = ϕ(f), for all g ∈ Γ and f ∈ `∞(Γ), where (g · f)(h) = f(g−1h).

Exercise 3.1. Let I be a set and ϕ : `∞(I)→ C be a unital positive linear functional. Prove that
|ϕ(f)| ≤ ‖f‖∞, for every f ∈ `∞(I).

Exercise 3.2. Let Γ be a countable group and denote by P(Γ) the collection of all subsets of Γ.
Prove that Γ is amenable if and only if there exists a finitely additive measure m : P(Γ) → [0, 1]
such that m(Γ) = 1 and m(gA) = m(A), for every g ∈ Γ and A ⊂ Γ, where gA := {gx | x ∈ A}.

Example 3.3. Every finite group Γ is amenable, as witnessed by the functional ϕ(f) = |Γ|−1
∑

g∈Γ f(g).

In order to give examples of infinite amenable groups, we need to recall the following:

Definition 3.4. A free ultrafilter on N is a unital homomorphism ω : `∞(N)→ C which is not the
evaluation en at any n ∈ N given by en(f) = f(n).

Remark 3.5. To see that free ultrafilters on N exist, let Kn ⊂ `∞(N)∗ be the weak∗ closure
of {ek | k > n}. Then Kn is weak∗-compact by Alaoglu’s theorem (see [Fo99, Theorem 5.18])
and Kn+1 ⊂ Kn, for all n. Thus, ∩nKn 6= ∅. If ω ∈ ∩nKn, then ω : `∞(N) → C is a unital
homomorphism. Moreover, if n ∈ N, then ω ∈ Kn, thus ω(δn) = 0 and hence ω 6= en.

Notation. For a free ultrafilter ω on N, we denote limn→ω xn := ω((xn)n), for every (xn)n ∈ `∞(N).
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Exercise 3.6. Prove that if ω is a free ultrafilter on N and limn→∞ xn = 0, then limn→ω xn = 0.

Examples 3.7. (of amenable groups) Let ω be a free ultrafilter on N.

(1) If Γ = ∪nΓn, where Γn < Γ are amenable subgroups and Γn ⊂ Γn+1, for all n, then Γ is
amenable. Let ϕn : `∞(Γn)→ C be a unital, positive, left invariant linear functional. Define
ϕ : `∞(Γ) → C by ϕ(f) = limn→ω ϕn(f|Γn

). Then ϕ is a left invariant state. Indeed, if
g ∈ Γ, then g ∈ ΓN , for some N . Thus, if f ∈ `∞(Γ), then (g ·f)|Γn

= g ·(f|Γn
), for all n ≥ N .

Hence by Exercise 3.6 we get ϕ(g · f) = limn→ω ϕn(g · (fΓn)) = limn→ω ϕn(f|Γn
) = ϕ(f).

In particular, any increasing union of finite groups is amenable.
(2) Z is amenable. To see this, let Fn = {−n,−n + 1, ...,−1, 0, 1, ..., n − 1, n}. Then for any

g ∈ Z we have |(g + Fn) \ Fn| ≤ 2|g| and thus limn→∞ |(g + Fn) \ Fn|/|Fn| = 0. Define
ϕ : `∞(Z)→ C by letting ϕ(f) = limn→ω(1/|Fn|)

∑
x∈Fn

f(x). For every g ∈ Z, we have

|ϕ(g · f)− ϕ(f)| = | lim
n→ω

(1/|Fn|)(
∑
x∈Fn

f(x− g)−
∑
x∈Fn

f(x))|

≤ ‖f‖∞ lim
n→ω
|(Fn − g)4Fn|/|Fn| = 0.

Exercise 3.8. Prove that if Γ and Λ are countable amenable groups, then the direct product Γ×Λ
is an amenable group. Prove that any countable abelian group is amenable.

Theorem 3.9. Let Γ be a countable group. Then the following conditions are equivalent:

(1) Γ is amenable.
(2) Γ satisfies the Reiter condition: there exists a sequence of non-negative functions

fn ∈ `1(Γ) such that ‖fn‖1 = 1, for all n, and limn→∞ ‖g · fn − fn‖1 = 0, for all g ∈ Γ.
(3) Γ satisfies the Følner condition: there exists a sequence of finite subsets Fn ⊂ Γ such that

limn→∞ |gFn \ Fn|/|Fn| = 0, for all g ∈ Γ.

The proof of this result relies on two very useful tricks, due to Day (the proof of (1) ⇒ (2)) and
Namioka (the proof of (2) ⇒ (3)). Namioka’s trick uses the following useful identity:

Exercise 3.10. Let (S, ν) be a standard measure space (e.g., let (S, ν) a standard probability space
or a countable set with its counting measure). Prove that if f1, f2 ∈ L1(S, ν) and f1, f2 ≥ 0, then

‖f1 − f2‖1 =

∫ ∞
0
‖1{f1>t} − 1{f2>t}‖1dt.

Proof of Theorem 3.9. Enumerate Γ = {gn}n≥1.

(1) ⇒ (2) Fix n ≥ 1 and consider the convex subset

C := {(g1 · f − f, g2 · f − f, ..., gn · f − f) | f ∈ `1(Γ), f ≥ 0, ‖f‖1 = 1}
of the Banach space `1(Γ)⊕n with the norm ‖(f1, f2, ..., fn)‖ =

∑n
i=1 ‖fi‖1.

We claim that 0 = (0, 0, ..., 0) ∈ C
‖·‖
. Assuming this claim, we can find fn ∈ `1(Γ) such that

fn ≥ 0, ‖fn‖1 = 1 and
∑n

i=1 ‖gi · fn − fn‖1 ≤ 1/n. This clearly implies (2).

If the claim were false, then since C
‖·‖ ⊂ `1(Γ)⊕n is a closed convex set and (`1(Γ)⊕n)∗ = `∞(Γ)⊕n ,

the Hahn-Banach separation theorem (see, e.g., [Ru91, Theorem 3.4]) implies the existence of
F1, F2, ..., Fn ∈ `∞(Γ) and α > 0 such that

∑n
i=1<〈gi · f − f, Fi〉 ≥ α, for any f ∈ `1(Γ) with f ≥ 0

and ‖f‖1 = 1.

If we put F =
∑n

i=1<(g−1
i ·Fi−Fi), then the last inequality rewrites as 〈f, F 〉 ≥ α, for any f ∈ `1(Γ)

with f ≥ 0 and ‖f‖1 = 1. For f = δg, this implies that F (g) ≥ α, for all g ∈ Γ. Thus, we get that
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ϕ(F ) ≥ ϕ(α · 1) = α > 0. On the other hand, ϕ(F ) =
∑n

i=1(ϕ(<(g−1
i · Fi)) − ϕ(<Fi)) = 0. This

gives the desired contradiction.

(2) ⇒ (3) If f1, f2 ∈ `1(Γ) and f1, f2 ≥ 0, then Exercise 3.10 gives that

(3.1) ‖f1 − f2‖1 =

∫ ∞
0
‖1{f1>t} − 1{f2>t}‖1dt and ‖f1‖1 =

∫ ∞
0
‖1{f1>t}dt.

By (2), for any n ≥ 1 we can find f ∈ `1(Γ) such that f ≥ 0, ‖f‖1 = 1 and
∑n

i=1 ‖gi ·f −f‖1 < 1/n.
For t > 0, let Kt = {f > t}. Since f ∈ `1(Γ), we get that Kt is a finite subset of Γ. Also, note that
{g ·f > t} = gKt and thus that ‖1{g·f>t}−1{f>t}‖1 = |gKt4Kt|, for all g ∈ Γ. Thus, by combining
the last inequality with (3.1), we derive that∫ ∞

0

n∑
i=1

|giKt −Kt|dt < 1/n = 1/n‖f‖1 =

∫ ∞
0

(|Kt|/n)dt.

Hence, there is tn > 0 such that Fn := Ktn satisfies
∑n

i=1 |giFn4Fn| < |Fn|/n. This proves (3).

(3) ⇒ (1) Let ω be a free ultrafilter on N. Define ϕ : `∞(Γ)→ C by letting

ϕ(f) = lim
n→ω

1

|Fn|
∑
x∈Fn

f(x).

Then as in the proof of Examples 3.7 (2), it follows that Γ is amenable. �

Proposition 3.11. F2 is not amenable.

Proof. Assume by contradiction that there exists a unital, positive, left translation invariant linear
functional ϕ : `∞(F2) → C. Define m : P(F2) → [0, 1] my m(A) = ϕ(1A). Then m is finitely
additive (m(A∪B) = m(A)+m(B), for every disjoint A,B ⊂ F2) and left invariant (m(gA) = m(A),
for every g ∈ F2 and A ⊂ F2).

Let a and b be the free generators of F2. Let S be the set of elements of F2 whose reduced form
begins with a non-zero power of a, and put T = F2\S. Then aT ⊂ S, bS∪b2S ⊂ T and bS∩b2S = ∅.
Thus, we get m(S) ≥ m(aT ) = m(T ) ≥ m(bS ∪ b2S) = m(bS) + m(b2S) = 2m(S). This implies
that m(S) = m(T ) = 0. Since m(S) +m(T ) = m(F2) = 1, this provides a contradiction. �

Exercise 3.12. Let Γ1 and Γ2 be any countable groups such that |Γ1| > 1 and |Γ2| > 2. Prove
that the free product group Γ = Γ1 ∗ Γ2 is not amenable.

Proposition 3.11 implies that any countable group which contains F2 as subgroup is non-amenable.
Whether the converse is true, i.e., whether every countable non-amenable group contains F2, became
known as von Neumann’s problem. This was settled, in the negative, by Olshanskii in 1980, who
proved that every large enough prime p (p > 1075), there are Tarski monster p-groups (i.e., groups
whose only proper non-trivial subgroup is the cyclic group with p elements) which are not amenable.

Nevertheless, the following measurable version of von Neumann’s problem has a positive answer:

Theorem 3.13 (Gaboriau and Lyons, [GL07]). Let Γ be a countable non-amenable group. Then
there is a free ergodic p.m.p. action Γ y (X,µ) (for instance, the Bernoulli action Γ y ([0, 1]Γ,LebΓ))
and a free ergodic p.m.p. action F2 y (X,µ) such that

R(F2 y X) ⊂ R(Γ y X).

Conversely, if R(F2 y X) ⊂ R(Γ y X), for some free p.m.p. actions F2,Γ y (X,µ), then Γ is
non-amenable (see Exercises 3.18 and 3.19).
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Exercise 3.14. Let R be an ergodic p.m.p. equivalence relation. Prove that there exists an ergodic
hyperfinite p.m.p. subequivalence relation S ⊂ R.

Deduce that if Γ is an infinite countable group, then for every ergodic p.m.p. action Γ y (X,µ),
there is an ergodic p.m.p. action Z y (X,µ) such that R(Z y X) ⊂ R(Γ y X).

3.2. Amenable equivalence relations.

Theorem 3.15 (Ornstein and Weiss, [OW80]). If Γ and Λ are infinite amenable groups, then any
ergodic p.m.p. actions of Γ and Λ on non-atomic standard probability spaces are orbit equivalent.

Definition 3.16. A p.m.p. equivalence relation R on (X,µ) is amenable if there is a sequence of
Borel functions ξn : R → [0,∞) such that ξxn : [x]R → [0,∞) given by ξxn(z) = ξn(x, z) satisfy

(1) ξxn ∈ `1([x]R) and ‖ξxn‖1 = 1, for every x ∈ X, and
(2) ‖ξxn − ξ

y
n‖1 → 0, for all y ∈ [x]R, for almost every x ∈ X.

Lemma 3.17. If Γ y (X,µ) is a p.m.p. action of a countable amenable group Γ, then R(Γ y X)
is an amenable p.m.p. equivalence relation.

Proof. By Theorem 3.9, we can find a sequence of non-negative functions fn ∈ `1(Γ) such that
‖fn‖1 = 1, for all n, and limn→∞ ‖g · fn − fn‖1 = 0, for all g ∈ Γ. Then it is easy to see that the
sequence of functions ξn : R(Γ y X)→ [0,∞) given by

ξn(x, y) =
∑

g∈Γ, x=g·y
fn(g)

witnesses the amenability of R(Γ y X). �

Exercise 3.18. Let Γ y (X,µ) be a free p.m.p. action of a countable group Γ. Prove that if
R(Γ y X) is an amenable p.m.p. equivalence relation, then Γ is an amenable group.

Exercise 3.19. Let S ⊂ R be p.m.p. equivalence relations. Prove that if R is amenable, then S
is amenable.

Lemma 3.20. Let R be an amenable p.m.p. equivalence relation on (X,µ). Then R|Y is an
amenable p.m.p. equivalence relation, for every Borel set Y ⊂ X.

By Lemma 3.17, Theorem 3.15 follows by combining Theorem 2.3 with the next result.

Theorem 3.21 (Connes, Feldman and Weiss, [CFW81]). Any amenable p.m.p. equivalence relation
is hyperfinite.

Theorem 3.21 follows by combining the next three lemmas (3.22,3.25,3.26). We start with the
following key lemma:

Lemma 3.22. Let R be an amenable p.m.p. equivalence relation on (X,µ). Then for every
θ1, ..., θk ∈ [[R]] and ε > 0, there are a non-null Borel set Y ⊂ X and a finite p.m.p subequivalence
relation S ⊂ R|Y such that

µ({x ∈ Y ∩ dom(θi) | θi(x) 6∈ [x]S}) ≤ ε · µ(Y ), for every 1 ≤ i ≤ k.

The following fact will be needed in the proof of Lemma 3.22.

Exercise 3.23. Let R be a countable p.m.p. equivalence relation on (X,µ). Prove that for every
Borel function ξ : R → [0,∞) we have that∫

X

( ∑
y∈[x]R

ξ(x, y)
)

dµ(x) =

∫
X

( ∑
x∈[y]R

ξ(x, y)
)

dµ(y).
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Proof of Lemma 3.22. For every 1 ≤ i ≤ k, let θ̃i ∈ [R] extending θi. Then it is enough to prove

the conclusion for θ̃1, ..., θ̃k instead of θ1, ..., θk. Thus, we may assume that θ1, ..., θk ∈ [R].

Let ξn : R → [0,∞) be a sequence of Borel functions as in Definition (3.16). Then ‖ξθi(x)
n −ξxn‖1 → 0,

for all 1 ≤ i ≤ k and almost every x ∈ X. Since ‖ξθi(x)
n − ξxn‖1 ≤ 2, for all x ∈ X, the dominated

convergence theorem implies that
∫
X ‖ξ

θi(x)
n − ξxn‖1 dµ(x)→ 0, for every 1 ≤ i ≤ k. Thus, there is

n ≥ 1 such that ξ := ξn satisfies

(3.2)

∫
X

k∑
i=1

‖ξθi(x) − ξx‖1 dµ(x) < ε = ε ·
∫
X
‖ξx‖1 dµ(x).

For y ∈ X, let ξy : [y]R → [0,∞) be given by ξy = ξ(x, y). By Exercise (3.23), (3.2) rewrites as

(3.3)

∫
X

k∑
i=1

‖ξy ◦ θi − ξy‖1 dµ(y) < ε ·
∫
X
‖ξy‖1 dµ(y).

For y ∈ X and t > 0, let Aty = {x ∈ [y]R | ξy(x) > t}. By Exercise 3.10, (3.3) rewrites as

(3.4)

∫
X

∫ ∞
0

k∑
i=1

|θ−1
i (Aty)4Aty| dt dµ(y) < ε ·

∫
X

∫ ∞
0
|Aty| dt dµ(y).

By Fubini’s theorem we conclude that there is t > 0 such that if Ay := Aty, then the Borel set

Z := {y ∈ X |
k∑
i=1

|θ−1
i (Ay)4Ay| < ε · |Ay|}

is non-null.

Let W ⊂ Z be a non-null Borel set such that Ay ∩Ay′ = ∅, for all y 6= y′ ∈W . Then Y := ty∈WAy
is a non-null Borel set. We consider the p.m.p. equivalence relation S ⊂ R|Y whose classes are the
sets of the form Ay, for some y ∈W . Since |Ay| ≤ ‖ξy‖1/t, for all y ∈ X, we get that∫

X
|Ay| dµ(y) ≤

( ∫
X
‖ξy‖1 dµ(y)

)
/t = 1/t <∞,

and thus Ay is finite for almost every y ∈ X. This implies that S is a finite equivalence relation.

Finally, let 1 ≤ i ≤ k. Let x ∈ Y and y ∈ W such that x ∈ Ay. If θi(x) /∈ [x]S , then x /∈ θ−1
i (Ay).

This implies that

µ({x ∈ Y | θi(x) /∈ [x]S}) ≤
∫
W
|Ay \ θ−1

i (Ay)| dµ(y) ≤ ε ·
∫
W
|Ay| dµ(y) = ε · µ(Y ),

and finishes the proof. �

Exercise 3.24. Let (X,µ) be a standard probability space, and θ : X → X a Borel map such that
µ({x ∈ X | θ(x) 6= x}) > 0. Prove that there is a non-null Borel set A ⊂ X such that θ(A)∩A = ∅.

Lemma 3.25. Let R be an amenable p.m.p. equivalence relation on (X,µ). Then for every
ϕ1, ..., ϕk ∈ [R] and ε > 0, there is a finite p.m.p subequivalence relation T ⊂ R such that

µ({x ∈ X | ϕi(x) 6∈ [x]T }) ≤ ε, for every 1 ≤ i ≤ k.

Proof. We adapt an argument due to Popa (see the proof of [AP19, Theorem 11.1.17]). Let ε > 0.
Let F the be set of all (necessarily countable) families {Yj}j∈J of non-null, pairwise disjoint Borel
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subsets of X for which we can find finite p.m.p. subequivalence relations Sj ⊂ R|Yj , for every
j ∈ J , such that denoting Z1 = tj∈JYj and T1 = tj∈JSj ⊂ R|Z1 we have that

(3.5) µ({x ∈ Z1 | ϕi(x) /∈ [x]T1) + µ({x /∈ Z1 | ϕi(x) ∈ Z1}) ≤ ε · µ(Z1), for every 1 ≤ i ≤ k.

SinceR is amenable, Lemma 3.22 provides a non-null Borel set Y ⊂ X and finite p.m.p. equivalence
relation S ⊂ R|Y such that µ({x ∈ Y | ϕi(x) 6∈ [x]S}) ≤ ε/2 · µ(Y ), for every 1 ≤ i ≤ k. Since

µ({x /∈ Y | ϕi(x) ∈ Y }) = µ({x ∈ Y | ϕi(x) /∈ Y }) ≤ µ({x ∈ Y | ϕi(x) 6∈ [x]S}) ≤ ε/2 · µ(Y ),

we get that {Y } ∈ F , and thus F is non-empty.

By Zorn’s lemma, F admits a maximal element, {Yj}j∈J , with respect to inclusion. In order to
finish the proof, it suffices to argue that Z1 := tj∈JYj ⊂ X is co-null.

Assuming otherwise, let Z = X \Z1. Let θi be the restriction of ϕi to Z ∩ϕ−1
i (Z), for all 1 ≤ i ≤ k.

Since R|Z is amenable by Lemma 3.20, by applying Lemma 3.22 to θ±1 , ..., θ
±
k ∈ [[R|Z]] we find a

non-null Borel set Z2 ⊂ Z and a finite p.m.p. equivalence relation T2 ⊂ R|Z2 such that

(3.6) µ({x ∈ Z2 ∩ dom(θi) | θ(x) /∈ [x]T2}) ≤ (ε/2) · µ(Z2), for every θ ∈ {θ±1 , ..., θ
±
k }.

By applying (3.6) to θi we get that

(3.7) µ({x ∈ Z2 | ϕi(x) ∈ Z and ϕi(x) /∈ [x]T2}) ≤ (ε/2) · µ(Z2), for every 1 ≤ i ≤ k.

Moreover, we have that

θi({x ∈ Z \ Z2 | ϕi(x) ∈ Z2}) = {x ∈ Z2 ∩ dom(θ−1
i ) | θ−1

i (x) ∈ Z \ Z2}
⊂ {x ∈ Z2 ∩ dom(θ−1

i ) | θ−1
i (x) /∈ [x]T2},

and since θi is measure preserving, applying (3.6) to θ−1
i gives that

(3.8) µ({x ∈ Z \ Z2 | ϕi(x) ∈ Z2}) ≤ (ε/2) · µ(Z2), for every 1 ≤ i ≤ k.

Next, we observe that {x ∈ Z1 ∪ Z2 | ϕi(x) /∈ [x]T1∪T2} is a subset of

{x ∈ Z1 | ϕi(x) 6∈ [x]T1} ∪ {x 6∈ Z1 | ϕi(x) ∈ Z1} ∪ {x ∈ Z2 | ϕi(x) ∈ Z and ϕi(x) /∈ [x]T2},
and that {x /∈ Z1 ∪ Z2 | ϕi(x) ∈ Z1 ∪ Z2} is a subset of

{x /∈ Z1 | ϕi(x) ∈ Z1} ∪ {x ∈ Z \ Z2 | ϕi(x) ∈ Z2}.
In combination with (3.7) and (3.8), we derive that for all 1 ≤ i ≤ k we have

µ({x ∈ Z1 ∪ Z2 | ϕi(x) /∈ [x]T1∪T2}) + µ({x /∈ Z1 ∪ Z2 | ϕi(x) ∈ Z1 ∪ Z2}) ≤ ε · µ(Z1 ∪ Z2).

This contradicts the maximality of {Yj}j∈J and finishes the proof. �

Lemma 3.26. A countable p.m.p. equivalence relation R on (X,µ) is hyperfinite if and only if for
every ϕ1, ..., ϕk ∈ [R] and ε > 0, we can find a finite subequivalence relation T ⊂ R such that

µ({x ∈ X | ϕi(x) /∈ [x]T }) < ε, for every 1 ≤ i ≤ k.

Proof. The implication (⇒) is obvious. To prove the implication (⇐), we use Theorem 1.10 to
write R = R(Γ y X), for some countable group Γ. Enumerate Γ = {ϕn}n∈N ⊂ [R].

By the hypothesis, for any k ∈ N, we can find a finite p.m.p. equivalence relation Tk ⊂ R such that

µ({x ∈ X | ϕi(x) /∈ [x]Tk}) ≤ 1/2k, for every 1 ≤ i ≤ k.

Then Rn :=
⋂
k≥n Tk, for n ∈ N, is a finite p.m.p. equivalence relation such that Rn ⊂ Rn+1 and

µ({x ∈ X | ϕi(x) /∈ [x]Rn}) ≤ 1/2n−1, for every 1 ≤ i ≤ n.

This inequality implies the existence of a co-null Borel set Y ⊂ X such that for every i ∈ N, we have
ϕi(x) ∈ [x]∪n∈NRn , for all x ∈ Y . Thus, R|Y = ∪n∈NRn|Y , which implies that R is hyperfinite. �
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4. Orbit equivalence and von Neumann algebras

The theory of orbit equivalence, initiated by H. Dye in [Dy59], was originally motivated by the the-
ory of von Neumann algebras [MvN36,MvN43]. To explain this connection, we will start with a brief
introduction to von Neumann algebras, and refer the reader to [AP19, Io19] for more information.

4.1. von Neumann algebras basics.

Definition 4.1. A Hilbert spaceH is a vector space endowed with a scalar product 〈·, ·〉 : H×H → C
such that 〈x, x〉 = 0⇒ x = 0 and H is complete with respect to the norm ‖x‖ =

√
〈x, x〉.

Examples 4.2. (of Hilbert spaces):

• Cn, for n ≥ 1, with the Euclidean scalar product 〈(x1, ..., xn), (y1, ..., yn)〉 = x1ȳ1+...+xnȳn.
• L2(X), for any measure space (X,µ), with the scalar product 〈f, g〉 =

∫
X fḡ dµ.

• `2(I), for any set I, with the scalar product 〈f, g〉 =
∑

i∈I f(i)g(i).
• Every Hilbert space H has an orthonormal basis: a set {ξi}i∈I such that 〈ξi, ξj〉 = δi,j , for

all i, j ∈ I, and ξ =
∑

i∈I〈ξ, ξi〉ξi, for all ξ ∈ H. Consequenty, H is isomorphic to `2(I).

Definition 4.3. Let H be a Hilbert space. A map T : H → H is called linear if it satisfies
T (aξ + bη) = aT (ξ) + bT (η), for all a, b ∈ C and ξ, η ∈ H. A linear map T : H → H is called
bounded if ‖T‖ := sup{‖T (ξ)‖ | ‖ξ‖ ≤ 1} < ∞. A linear bounded map T : H → H is called a
bounded (linear) operator. We denote by B(H) the algebra of all bounded operators T : H → H.

Exercise 4.4. Let T ∈ B(H). Prove that there exists a unique T ∗ ∈ B(H), called the adjoint of T ,
such that 〈Tξ, η〉 = 〈ξ, T ∗η〉, for all ξ, η ∈ H. Prove that ‖T ∗‖ = ‖T‖ and ‖T ∗T‖ = ‖T‖2.

Definition 4.5. An operator T ∈ B(H) is called:

• self-adjoint if T ∗ = T .
• a projection if T = T ∗ = T 2.
• a unitary if T ∗T = TT ∗ = IdH.
• an isometry if ‖Tξ‖ = ‖ξ‖, for all ξ ∈ H, or equivalently T ∗T = IdH.

Remark 4.6. We denote by U(H) the group unitary operators T ∈ B(H). A unitary representation
of a countable group Γ on a Hilbert space H is a group homomorphism π : Γ→ U(H).

Definition 4.7. We consider the following topologies on B(H):

• the norm topology: Ti → T iff ‖Ti − T‖ → 0.
• the strong operator topology (SOT): Ti → T iff ‖Ti(ξ)− T (ξ)‖ → 0, for all ξ ∈ H.
• the weak operator topology (WOT): Ti → T iff 〈Ti(ξ), η〉 → 〈T (ξ), η〉, for all ξ, η ∈ H.

Definition 4.8. Let H be a Hilbert space.

• A subalgebra A ⊂ B(H) is called a ∗-algebra if T ∗ ∈ A, for every T ∈ A.
• A ∗-subalgebra A ⊂ B(H) is called a C∗-algebra if it closed in the norm topology.
• A ∗-subalgebra A ⊂ B(H) is called a von Neumann algebra if it is WOT-closed.

Definition 4.9. A map π : A → B between two C∗-algebras is a ∗-homomorphism if it is a
homomorphism (π(a+ b) = π(a) + π(b), π(ab) = π(a)π(b), π(λa) = λπ(a), for all a, b ∈ A, λ ∈ C)
and satisfies π(a∗) = π(a)∗ for all a ∈ A. A bijective ∗-homomorphism is called a ∗-isomorphism.

Examples 4.10. (of von Neumann algebras):

(1) B(H), in particular Mn(C) = B(Cn).
(2) L∞(X), for any standard probability space (X,µ).
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(3) Let B ⊂ B(H) be a set such that T ∗ ∈ B, for every T ∈ B. Then the commutant of B,
defined as B′ = {T ∈ B(H) | TS = ST, for every S ∈ B} is a von Neumann algebra.

Surprisingly, the next theorem shows that every von Neumann algebra arises this way!

Theorem 4.11 (von Neumann’s bicommutant theorem). If M ⊂ B(H) is a unital ∗-subalgebra,
then the following three conditions are equivalent:

(1) M is WOT-closed.
(2) M is SOT-closed.
(3) M = M ′′ := (M ′)′.

This is a beautiful result which asserts that for ∗-algebras, the analytic condition of being closed
in the WOT is equivalent to the algebraic condition of being equal to their double commutant.

Proposition 4.12. Let (X,µ) be a standard probability space. Define π : L∞(X)→ B(L2(X)) by
letting πf (ξ) = fξ, for all f ∈ L∞(X) and ξ ∈ L2(X). Then π(L∞(X))′ = π(L∞(X)). Therefore,
π(L∞(X)) ⊂ B(L2(X)) is a maximal abelian von Neumann subalgebra.

Proof. Let T ∈ π(L∞(X))′ and put g = T (1). Then fg = πfT (1) = Tπf (1) = T (f) and hence

‖fg‖2 = ‖T (f)‖2 6 ‖T‖ ‖f‖2, for every f ∈ L∞(X).

Let ε > 0 and f = 1{x∈X| |g(x)|>‖T‖+ε}. Then it is clear that ‖fg‖2 > (‖T‖+ε)‖f‖2. In combination
with the last inequality, we get that (‖T‖ + ε)‖f‖2 6 ‖T‖‖f‖2, and so f = 0, almost everywhere.
Thus, we conclude that g ∈ L∞(X). Since T (f) = fg = πg(f), for all f ∈ L∞(X), and L∞(X) is
‖.‖2-dense in L2(X), it follows that T = πg ∈ L∞(X). �

4.2. The group measure space construction. Let Γ y (X,µ) be a p.m.p. action of a countable
group Γ on a standard probability space (X,µ). Consider the Hilbert space H := L2(X) ⊗ `2(Γ).
(If H1,H2 are Hilbert spaces, then tensor Hilbert space H1 ⊗ H2 is defined as the closure of the
algebraic tensor product H1 ⊗alg H2 w.r.t. scalar product 〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈ξ1, η1〉 · 〈ξ2, η2〉).

We define a unitary representation σ : Γ → U(L2(X)) by σg(ξ)(x) = ξ(g−1x), for all ξ ∈ L2(X).
Then σg(L

∞(X)) = L∞(X), for all g ∈ Γ. Further, we define a unitary representation u : Γ→ U(H)
and a ∗-homomorphism π : L∞(X)→ B(H) by letting

ug(ξ ⊗ δh) = σg(ξ)⊗ δg−1h and π(f)(ξ ⊗ δh) = fξ ⊗ δh.

We view L∞(X) ⊂ B(H), via π. Then it is easy to see that

ugfu
∗
g = σg(f), for all g ∈ Γ and every f ∈ L∞(X).

Definition 4.13. The group measure space von Neumann algebra L∞(X) o Γ ⊂ B(H) is defined
as the WOT-closure of the linear span of {fug|f ∈ L∞(X), g ∈ Γ}. We denote M := L∞(X) o Γ.

Proposition 4.14. The linear functional τ : M → C given by τ(x) = 〈x(1⊗ δe), 1⊗ δe〉 is

(1) unital: τ(1) = 1.
(2) positive: τ(a∗a) ≥ 0, for every a ∈M .
(3) faithful: if τ(a∗a) = 0, for some a ∈M , then a = 0.
(4) normal: τ is WOT-continuous on (M)1 = {a ∈M | ‖a‖ ≤ 1}.
(5) a trace: τ(ab) = τ(ba), for every a, b ∈M
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Proof. It is clear that τ is unital and normal. Since τ(a∗a) = 〈a∗a(1⊗δe), 1⊗δe〉 = ‖a(1⊗δe)‖2 ≥ 0,
it is also positive. To see that τ is faithful, let a ∈M such that τ(a∗a) = 0 and thus a(1⊗ δe) = 0.
Fix f ∈ L∞(X) and g ∈ Γ. Define ρ(f) ∈ B(H) and vg ∈ U(H) by letting ρ(f)(ξ⊗δh) = ξσh(f)⊗δh
and vg(ξ⊗ δh) = ξ⊗ δhg. Then ρ(f), vg commute with π(f ′), ug′ , for every f ′ ∈ L∞(X) and g′ ∈ Γ.
This implies that ρ(f), vg ∈M ′ and thus

a(f ⊗ δg) = avgρ(f)(1⊗ δe) = vgρ(f)a(1⊗ δe) = 0.

Since this holds for every f ∈ L∞(X) and g ∈ Γ, we get that a = 0 and hence τ is faithful.

Finally, note that for all f ∈ L∞(X) and g ∈ Γ we have that

τ(fug) = 〈fug(1⊗ δe), 1⊗ δe〉 = 〈f ⊗ δg, 1⊗ δe〉 = δg,e

∫
X
f dµ.

If f1, f2 ∈ L∞(X) and g1, g2 ∈ Γ, then f1ug1f2ug2 = f1σg1(f2)ug1g2 and f2ug2f1ug2 = f2σg2(f1)ug2g1 .
Since τ(σg(f)) = τ(f), for all f ∈ L∞(X) and g ∈ Γ, we get that τ(f1ug1f2ug2) = τ(f2ug2f1ug2).
This implies that τ is a trace. �

Definition 4.15. A von Neumann algebra M is called tracial if it admits a unital, positive, faithful,
normal trace τ : M → C.

Lemma 4.16. A p.m.p. action Γ y (X,µ) is ergodic iff any function f ∈ L2(X) which satisfies
that σg(f) = f , for all g ∈ Γ, is essentially constant.

Proof. (⇐) If Y is a Γ-invariant set, then f = 1Y ∈ L2(X) is a Γ-invariant function. Thus, there
is c ∈ C such that f = c. As f2 = f , we get that c ∈ {0, 1}, hence µ(Y ) =

∫
X f dµ = c ∈ {0, 1}.

(⇒) Let f ∈ L2(X) be a Γ-invariant function. If f is not constant, then it admits at least two
distinct essential values z, w ∈ C. Let δ = |z − w|/2. Then Y = {x ∈ X| |f(x) − z| < δ} and
Z = {x ∈ X| |f(x) − w| < δ} are disjoint, Γ-invariant, measurable sets. Since µ(Y ) > 0 and
µ(Z) > 0, we get a contradiction with the ergodicity of the action. �

Note that A := L∞(X) ⊂M is an abelian von Neumann subalgebra.

Proposition 4.17. The following hold:

(1) If the action Γ y (X,µ) is free, then A ⊂M is maximal abelian, i.e., A′ ∩M = A.
(2) If the action Γ y (X,µ) is free and ergodic, then M is a factor, i.e., Z(M) := M ′∩M = C1.

Proof. (1) Assume that the action is free. Let a ∈ A′ ∩M and write a(1 ⊗ δe) =
∑

g∈Γ ag ⊗ δg,
where ag ∈ L2(X). Fix f ∈ L∞(X) and define ρ(f) ∈ B(H) by letting ρ(f)(ξ ⊗ δh) = ξσh(f)⊗ δh.
Then ρ(f) ∈M ′ and thus we have∑
g∈Γ

fag⊗δg = π(f)a(1⊗δe) = aπ(f)(1⊗δe) = a(f⊗δe) = aρ(f)(1⊗δe) = ρ(f)a(1⊗δe) =
∑
g∈Γ

σg(f)ag⊗δg

Hence, fag = σg(f)ag, for all f ∈ L∞(X) and g ∈ Γ. Put Yg = {x ∈ X|ag(x) 6= 0}, for g 6= e.
From the last equality we get that f(g−1x) = f(x), for almost every x ∈ Yg, for all f ∈ L∞(X).
Since (X,µ) is a standard probability space, we can find a sequence of measurable sets Xn ⊂ X,
which separate points in X. By applying the last identity to f = 1Xn , for all n ≥ 1, we deduce that
g−1x = x, for almost every x ∈ Yg. Since the action is free, we get that µ(Yg) = 0, hence ag = 0.
Since this holds for all g ∈ Γ \ {e}, we conclude that a ∈ A.

(2) Since the action is free, (1) implies that Z(M) = {a ∈ A | σg(a) = a,∀g ∈ Γ}. Since the action
is also ergodic, the conclusion follows from Lemma 4.16. �
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4.3. Cartan subalgebras and orbit equivalence. If M is a tracial von Neumann algebra, then
a von Neumann subalgebra A ⊂M is called a Cartan subalgebra if the following conditions hold:

(1) A is maximal abelian, i.e., A′ ∩M = A, and
(2) the linear span of the normalising group NM (A) = {u ∈ U(M) | uAu∗ = A} is WOT-dense

in M .

By Proposition 4.17 (1), L∞(X) ⊂ L∞(X) o Γ is a Cartan subalgebra, for any free p.m.p. action
Γ y (X,µ). It is a fundamental observation of Singer (1955) that the isomorphism class of the
Cartan inclusion L∞(X) ⊂ L∞(X) o Γ captures exactly the orbit equivalence class of the action
Γ y (X,µ).

Proposition 4.18 (Singer, [Si55]). If Γ y (X,µ) and Λ y (Y, ν) are free p.m.p. actions, then the
following conditions are equivalent:

(1) There exists a ∗-isomorphism π : L∞(X)oΓ→ L∞(Y )oΛ such that π(L∞(X)) = L∞(Y ).
(2) The actions Γ y (X,µ) and Λ y (Y, ν) are orbit equivalent.

Proof. We will only sketch the proof of the implication (2) ⇒ (1) and refer the reader to [AP19,
Chapter 12] and [Io19, Section 12] for the reverse implication.

Denote A = L∞(X), B = L∞(Y ),M = L∞(X) o Γ and N = L∞(Y ) o Λ. Let θ : (X,µ) → (Y, ν)
be a measure space isomorphism such that θ(Γ · x) = Λ · θ(x), for almost every x ∈ X. Define
a ∗-isomorphism π : A → B by letting π(a) = a ◦ θ−1. Our goal is to show that π extends to a
∗-isomorphism π : M → N .

To this end, fix g ∈ Γ. Then (θ ◦ g−1 ◦ θ−1)(y) ∈ Λ · y, for almost every y ∈ Y . For h ∈ Λ, put
Yg,h = {y ∈ Y | (θ ◦ g−1 ◦ θ−1)(y) = h−1 · y}. Then {Yg,h}h∈Λ is a measurable partition of Y . Since
h−1 · Yg,h = {y ∈ Y | (θ ◦ g ◦ θ−1)(y) = h · y}, we also have that {h−1 · Yg,h}h∈Λ is a measurable
partition of Y . Using these facts, one checks that π(ug) =

∑
h∈Λ 1Yg,huh defines a unitary in N .

We define U : L2(X)⊗ `2(Γ)→ L2(Y )⊗ `2(Λ) by letting

U(a⊗ δg) =
∑
h∈Λ

(a ◦ θ−1)1Yg,h ⊗ δh, for every g ∈ Γ.

Then U gives a well-defined unitary operator. We leave it as an exercise to check that

U(aug (b⊗ δh)) = π(a)π(ug) U(b⊗ δh), for every a, b ∈ A and g, h ∈ Γ.

Thus, UaugU
∗ = π(a)π(ug), for all a ∈ A and g ∈ Γ. Since the linear span of {aug | a ∈ A, g ∈ Γ}

is WOT-dense in M , we deduce that UMU∗ ⊂ N . Hence, the ∗-isomorphism π : A → B extends
to a ∗-homomorphism π : M → N given by π(T ) = UTU∗. We leave it as exercise to check that
π(M) = N , and thus π is the desired ∗-isomorphism. �

5. Non-orbit equivalent actions: free groups of different ranks

Theorem 5.1 (Gaboriau, [Ga00, Ga02]). If 2 ≤ m 6= n ≤ ∞, then any two free ergodic p.m.p.
actions Fm y (X,µ) and Fn y (Y, ν) are not orbit equivalent.

The original proof of this theorem [Ga00] uses the notion of cost of p.m.p. equivalence relations
introduced by Levitt and developed extensively by Gaboriau (see Definition 5.2). In [Ga02], Gabo-
riau gave a new proof of this result based on his notion of `2-Betti numbers of p.m.p. equivalence
relations. Here we reproduce a proof of this theorem presented in [AP19, Section 18.3] due to Vaes,
itself a version in the spirit of operator algebras of a previous proof by Gaboriau. This relies on
showing that the cost of the orbit equivalence relation of any free ergodic p.m.p. action of Fm is
exactly m.
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Definition 5.2. Let R be a countable p.m.p. equivalence relation on (X,µ). A graphing for
R is a countable collection G = (ϕk) ⊂ [[R]] such that R is the smallest equivalence relation
containing (x, ϕk(x)), for every x ∈ dom(ϕk) and k. The cost of a graphing G of R is defined by
cost(R) :=

∑
k µ(dom(ϕk)). The cost of R is defined by cost(R) := inf{cost(G) | G graphing of R}.

Theorem 5.3 (Gaboriau, [Ga00]). Let Γ y (X,µ) be a free ergodic p.m.p. action of Γ = Fm.
Then the cost of the orbit equivalence relation R := R(Γ y X) is equal to m.

Proof of Theorem 5.3. Let a1, ..., am be free generators of Γ. Then (ai)
m
i=1 is a graphing of R of cost

m. Thus, we have to show that if G = (ϕk) is any graphing of R, then cost(G) ≥ m. By restricting
ϕk if necessary, we may assume that for every k, there is gk ∈ Γ such that ϕk(x) = gk · x, for every
x ∈ dom(ϕk). Moreover, we may assume that there are only finitely many ϕk’s, say ϕ1, ..., ϕN .
(This requires an argument, which we leave as an exercise).

Denote M = L∞(X) o Γ and let (ug)g∈Γ ⊂ U(M) be the canonical unitaries. Let a1, ..., am ∈ Γ be
free generators. We consider the space of 1-cocycles

Z1(Γ,M) = {c : Γ→M | c(gh) = ugc(h) + c(g), for all g, h ∈ Γ}.

Notice that Z1(Γ,M) is a right M -module. Since every cocycle c : Γ→M is uniquely determined
the by the values c(a1), ..., c(am) we have an isomorphism of right M -modules Φ : M⊗m → Z1(Γ,M)
given by Φ(x1, ..., xm) is the unique cocycle c : Γ→M such that c(a1) = x1, ..., c(am) = xm.

For every k, let pk = 1gkAk
and note that pk ∈ L∞(X) ⊂M is a projection.

We define a right M -modular map Ψ : Z1(Γ,M)→ ⊕kpkM by letting Ψ(c) = ⊕kpkc(gk). We claim
that Ψ is injective. To prove the claim, let c : Γ→M be a cocycle such that pkc(gk) = 0, for all k.
Then for every k1, .., kn we have that (pkl ◦ (gk1 ...gkl−1

)−1)ugk1
...ugkl−1

c(gkl) = 0 and thus

pk1(pk2 ◦ g
−1
k1

)...(pkn ◦ (gk1 ...gkn−1)−1)c(gk1 ...gkn)

=
n∑
l=1

[pk1(pk2 ◦ g
−1
k1

)...(pkn ◦ (gk1 ...gkn−1)−1)]ugk1
...ugkl−1

c(gkl) = 0
(5.1)

We are now ready to show that if g ∈ Γ, then c(g) = 0. Let A ⊂ X be a non-null measurable
set. Then we can find a non-null measurable subset B ⊂ A and k1, .., kn such that B is contained
in the domain of ϕk1 ◦ ... ◦ ϕkn and g · x = (ϕk1 ◦ ... ◦ ϕkn)(x), for all x ∈ B. Equivalently
1B ≤ (1Ak1

◦ (gk2 ...gkn))...(1Akn−1
◦ gkn)1Akn

and g = gk1 ...gkn . Thus, we have

1gB = 1gk1
...gknB

= 1B ◦ (gk1 ...gkn)−1

≤ (1Ak1
◦ g−1

k1
)...(1Akn

◦ (gk1 ...gkn)−1)

= pk1 ...(pkn ◦ (gk1 ...gkn−1)−1).

This and (5.1) imply that 1gBc(g) = 1gBc(g1...gk) = 1gBpk1 ...(pkn ◦ (gk1 ...gkn−1)−1)c(g1...gk) = 0.
Thus, for every non-null set A we can find a non-null subset B such that 1gBc(g) = 0. This implies
that c(g) = 0. Since g ∈ Γ is arbitrary, we derive that c = 0 and thus Ψ is injective.

Therefore, Ψ ◦ Φ : M⊕m → ⊕kpkM is a right M -modular injective map. By using Theorem 5.4
below, we conclude that m ≤

∑
k τ(pk) =

∑
k µ(Ak). �

Theorem 5.4. Let (M, τ) be a tracial von Neumann and {pi}i∈I , {qj}j∈J be projections in M .
Assume that there exists a right M -modular linear injective map T : ⊕ipiM → ⊕jqjM .

Then
∑

i∈I τ(pi) ≤
∑

j∈J τ(qj).
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For a proof of this theorem, see [Io19, Theorem 10.21].

Proof of Theorem 5.1. If two free ergodic p.m.p. actions Fm y (X,µ) and Fn y (Y, ν) are orbit
equivalent, then the orbit equivalence relations R(Fm y X) and R(Fn y Y ) are isomorphic. Thus,
they have the same cost, and therefore m = n by Theorem 5.3. �

6. Non-orbit equivalent actions of non-amenable groups (incomplete section)

6.1. Overview. By Ornstein and Weiss’ Theorem 3.15, any infinite amenable group Γ has only one
free ergodic p.m.p. action up to orbit equivalence. On the other hand, Connes and Weiss [CW80]
showed (by using Schmidt’s notion of strong ergodicity [Sc80]) that any non-amenable group Γ
without Kazhdan’s property (T) has at least two actions up to orbit equivalence. Moreover, in the
period 1980-2004, many groups were shown to have uncountably many such actions:

Theorem 6.1. The following countable groups admit uncountably many non-orbit equivalent free
ergodic p.m.p. actions:

(1) Bezuglyi-Golodets, [BG81]: McDuff’s (1969) continuum of groups.
(2) Gefter-Golodets, [GG89]: higher rank lattices.
(3) Hjorth, [Hj02]: any infinite group with Kazhdan’s property (T)
(4) Monod-Shalom, [MS02]: Fm × Fn, for any m,n ≥ 2; more generally, any direct product of

non-elementarily hyperbolic groups.
(5) Gaboriau-Popa, [GP03]: Fm, for any m ≥ 2.
(6) Popa, [Po04]: any group admitting an infinite normal subgroup with relative property (T).
(7) Ioana, [Io04]: any direct product Γ1 × Γ2, with Γ1 infinite amenable and Γ2 non-amenable.

From these, we highlight the following key advance:

Theorem 6.2 (Gaboriau-Popa, [GP03]). The free group Fm has uncountably many pairwise non-
orbit equivalent free ergodic p.m.p. actions, for any m ≥ 2.

The proof of Theorem 6.2 uses a separability argument in combination with Popa’s influential
notion of rigid actions, which we discuss in the next section. To outline the strategy of the proof,
assume that F3 = 〈a, b, c〉yα (X,µ) is a free ergodic p.m.p. action whose restriction to F2 = 〈a, b〉
is ergodic and rigid and restriction to Z = 〈c〉 is ergodic. Examples of such actions are provided by
the restriction of the natural action SL2(Z) y (T2, λ2) to any subgroup isomorphic to F3.

Dye’s theorem gives a free p.m.p. action ⊕NZ/2Z y (X,µ) with R(Z y X) = R(⊕NZ/2Z y X).
If I ⊂ N, by applying Dye’s theorem again, we can find a free p.m.p. action Z yβI (X,µ) such
that R(Z yβI X) = R(⊕IZ/2Z y X). Define a free ergodic p.m.p. action F3 yαI (X,µ) by
letting αI |F2

= α and αI |Z = βI . Then R(F3 yαI X) ⊂ R(F3 yαJ X) ⊂ R(F3 yα X), for all
I ⊂ J ⊂ N. Using that α|F2

is rigid, Gaboriau and Popa prove that for any infinite set I ⊂ N, the
set {J ⊂ N | αJ is orbit equivalent to αI} is countable. Thus, uncountably many of the actions
{αI | I ⊂ N} are pairwise not orbit equivalent.

6.2. Property (T). Let Γ be a countable group and Γ0 be a subgroup of Γ.

Definition 6.3. A unitary representation π : Γ→ U(H) of Γ on a Hilbert space H is said to have
almost invariant vectors if there is a sequence of vectors ξn ∈ H such that ‖ξn‖ = 1, for every n,
and ‖π(g)ξn − ξn‖ → 0, for every g ∈ Γ.
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Definition 6.4. The group Γ has property (T) (of Kazhdan) if for any unitary representation
π : Γ→ U(H) with almost invariant vectors there is a non-zero π(Γ)-invariant vector.

The inclusion Γ0 < Γ (or pair (Γ,Γ0)) has relative property (T) (of Kazhdan-Margulis) if for any
unitary representation π : Γ → U(H) with almost invariant vectors there is a non-zero π(Γ0)-
invariant vector.

Example 6.5. SLn(Z), for n ≥ 3, has property (T) [Ka67], and the inclusion Z2 < Z2 o SL2(Z)
has relative property (T) [Ka67,Ma82]. Here, SL2(Z) acts on Z2 by matrix multiplication.
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